

DPP No. 54

Topic: Vector

Type of Questions		M.M.	, Min.
Single choice Objective (no negative marking) Q.1,2,3	(3 marks, 3 min.)	[9,	9]
Multiple choice objective (no negative marking) Q.4,5,6	(5 marks, 4 min.)	[15,	12]
Subjective Questions (no negative marking) Q.7	(4 marks, 5 min.)	[4,	5]
Match the Following (no negative marking) Q.8	(8 marks, 8 min.)	[8,	81

- 1. Let \vec{u} and \vec{v} are unit vectors and \vec{w} is a vector such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$ then the value of [u v w] is -
 - (A) -1
- (B) 1
- (C)2
- (D) None of these
- If a unit vector $\hat{\mathbf{a}}$ in the plane of $\vec{\mathbf{b}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} & \vec{\mathbf{c}} = \hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is such that $\vec{\mathbf{a}} \wedge \vec{\mathbf{b}} = \vec{\mathbf{a}} \wedge \vec{\mathbf{d}}$ where 2. $\vec{d} = \hat{j} + 2\hat{k}$, then \hat{a} is
 - (A) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ (B) $\frac{\hat{i} \hat{j} + \hat{k}}{\sqrt{5}}$ (C) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$

- The length of the shortest distance between the lines, $\vec{r}_{l} = -3\hat{i} + 6\hat{j} + \lambda\left(-4\hat{i} + 3\hat{j} + 2\hat{k}\right)$ and 3.

$$\vec{r}_2 = -2\hat{i} + 7\hat{k} + \mu(-4\hat{i} + \hat{j} + \hat{k})$$
 is:

- (A) 9
- (B) 6
- (C) 3
- (D) None of these
- 4. In a \triangle ABC, let M be the mid point of segment AB and let D be the foot of the bisector of \angle C. Then the ratio $\frac{\text{Area } \Delta \text{ CDM}}{\text{Area } \Delta \text{ ABC}}$ is :
 - (A) $\frac{1}{4} \frac{a-b}{a+b}$

- (B) $\frac{1}{2} \frac{a-b}{a+b}$
- (C) $\frac{1}{2} \tan \frac{A-B}{2} \cot \frac{A+B}{2}$
- (D) $\frac{1}{4} \cot \frac{A-B}{2} \tan \frac{A+B}{2}$
- 5. If \vec{a} and \vec{b} are non-zero and non-collinear vectors, then
 - (A) $\vec{a} \times \vec{b} = [\vec{a} \ \vec{b} \ \hat{i}] \ \hat{i} + [\vec{a} \ \vec{b} \ \hat{j}] \ \hat{j} + [\vec{a} \ \vec{b} \ \hat{k}] \ \hat{k}$
- (B) $\vec{a} \cdot \vec{b} = (\vec{a} \cdot \hat{i}) (\vec{b} \cdot \hat{i}) + (\vec{a} \cdot \hat{j}) (\vec{b} \cdot \hat{j}) + (\vec{a} \cdot \hat{k}) (\vec{b} \cdot \hat{k})$
- (C) If $\vec{u} = \hat{a} (\hat{a} \cdot \hat{b}) \hat{b}$ and $\vec{v} = \hat{a} \times \hat{b}$, then $|\vec{v}| = |\vec{u}|$ (D) If $\vec{c} = \vec{a} \times (\vec{a} \times \vec{b})$, then $\vec{c} \cdot \vec{a} = 0$

6. The value(s) of $\alpha \in [0, 2\pi]$ for which vector $\vec{a} = \hat{i} + 3\hat{j} + (\sin 2\alpha)\hat{k}$ makes an obtuse angle with the

Z-axis and the vectors $\vec{b} = (\tan\alpha)\hat{i} - \hat{j} + 2\sqrt{\sin\frac{\alpha}{2}} \hat{k}$ and $\vec{c} = (\tan\alpha)\hat{i} + (\tan\alpha)\hat{j} - 3\sqrt{\csc\frac{\alpha}{2}} \hat{k}$ are orthogonal, is/are :

- (A) tan-1 3
- (B) $\pi \tan^{-1} 2$
- (C) π + tan⁻¹ 3
- (D) $2\pi \tan^{-1} 2$
- 7. A function y = f(x) is represented parametrically as follow

$$x = \phi(t) = t^5 - 5t^3 - 20t + 7$$

$$y = \psi(t) = 4t^3 - 3t^2 - 18t + 3, -2 < t < 2$$

Find the extrema of this function

8. Match the column

Column – II

(A) The possible value of a if $\vec{r} = (\hat{i} + \hat{j}) + \lambda(\hat{i} + 2\hat{j} - \hat{k})$ and (p) $-\hat{k}$

 $\vec{r}=(\hat{i}+2\hat{j})+\mu(-\hat{i}+\hat{j}+a\hat{k})$ are two skew lines where $\lambda,~\mu$ are scalars

- (B) The angle between the vectors $\vec{a} = \lambda \hat{i} 3\hat{j} \hat{k}$ and $\vec{b} = 2\lambda \hat{i} + \lambda \hat{j} \hat{k}$ is (q) -2 acute, whereas the vector \vec{b} makes an obtuse angle with positive direction of axes of coordinates , then λ may be
- (C) The possible value of a such that $2\hat{i}+\hat{j}+\hat{k}$, $\hat{i}+2\hat{j}+(1+a)\hat{k}$ and $3\hat{i}+a\hat{j}+5\hat{k}$ (r) 2 are coplanar is
- (D) If $\vec{A} = 2\hat{i} + \lambda \hat{j} + 3\hat{k}$, $\vec{B} = 2\hat{i} + \lambda \hat{j} + \hat{k}$, $\vec{C} = 3\hat{i} + \hat{j}$ and $\vec{A} + \lambda \vec{B}$ is perpendicular (s) 3 to \vec{C} , then $|2\lambda|$ is

Answers Key

- 1.

- (B) **2.** (B) **3.** (A) **4.** (B)(C)
- (A)(B)(C)(D) **6.** (B)(D)5.
- y is maximum at t = -1, y = 14, x = 31y is minimum at $t = \frac{3}{2}$; $y = -17\frac{1}{4}$, $x = \frac{-1033}{32}$
- **8.** (A) \rightarrow (p, q, r, s), (B) \rightarrow (p, q), (C) \rightarrow (q, s), (D) \rightarrow (r)

